molécules d'eau comportant les oxygènes de type O (5) et $O(6)$ ne sont liées à aucun cation. La cohésion de l'édifice cristallin est assurée par des liaisons hydrogène.

Dans le Tableau 4, figurent les atomes d'oxygène et de chlore qui se trouvent à des distances inférieures à $3,45 \AA$ des oxygènes des molécules d'eau et qui, dans le cas des oxygènes $O(1), O(2), O(3)$ et $O(4)$, ne sont pas liés au même cation. Pour les oxygènes $O(1), O(3)$, $\mathrm{O}(4), \mathrm{O}(5)$ et $\mathrm{O}(6)$, les entourages permettent de prévoir sans ambiguité les liaisons hydrogène. L'oxygène $O(2)$ a pour plus proches voisins trois atomes de chlore. En se référant aux critères angulaires de Baur \& Khan (1970), la molécule $\mathrm{H}_{2} \mathrm{O}$ (2) ne peut réaliser de liaisons hydrogène qu'avec $\mathrm{Cl}\left(3^{v}\right)$ et $\mathrm{Cl}(3)$ bien que la distance $\mathrm{O}(2)-\mathrm{Cl}\left(1^{\text {xl }}\right)$ soit inferieure à la distance $\mathrm{O}(2)-\mathrm{Cl}(3)$. Or l'affinement des coordonnées de l'hydrogène, qu'elles soient au départ données pour diriger $\mathrm{O}-\mathrm{H}$ vers $\mathrm{Cl}(3)$ ou vers $\mathrm{Cl}\left(1^{\text {xi }}\right)$, converge vers les mêmes valeurs qui placent l'hydrogène en position intermédiaire et fournissent une distance $\mathrm{O}(2)-\mathrm{H}=$ 0,82 (7) Å. Ce résultat est en faveur de l'existence d'une liaison hydrogène bifurquée que l'on peut admettre d'après les valeurs angulaires trouvées dans d'autres structures (Falk \& Knop, 1973). On rencontre une situation similaire dans le composé $\mathrm{CdMg}_{2} \mathrm{Cl}_{6} .2 \mathrm{H}_{2} \mathrm{O}$
(Ledésert \& Monier, 1981) pour l'oxygène $\mathrm{O}(2)$ et les chlores $\mathrm{Cl}\left(2^{\mathrm{x}}\right)$ et $\mathrm{Cl}\left(1^{\mathrm{xi}}\right)$.

Références

Bassett, H. \& Strain, R. N. C. (1952). J. Chem. Soc. pp. 1795-1806.
Baur, W. H. \& Khan, A. A. (1970). Acta Cryst. B26, 1584-1596.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Falk, M. \& Knop, O. (1973). Water: A Comprehensive Treatise, édité par F. Franks, Tome 2, pp. 55-113. New York, London: Plenum.
Groth, P. (1906). Chemische Kristallographie, Tome 1, p. 409. Leipzig: Engelmann.

International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
Leclaire, A. \& Borel, M. M. (1980). Acta Cryst. B36, 3088-3090.
Ledésert, M. \& Monier, J. C. (1981). Acta Cryst. B37, 652-654.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Structure of Mercury Sodium Phosphate

By Mayumi Hata and Fumiyuki Marumo
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 227, Japan

(Received 6 May 1981; accepted 22 June 1981)

Abstract

HgNaPO}_{4}\), orthorhombic, $\mathrm{Cmcm}, a=$ 5.883 (1), $b=9.401$ (3), $c=6.448$ (1) $\AA, Z=4$. Crystals were grown by hydrothermal reaction of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and NaOH solution at 473 K for 2 weeks. Structure refinement was carried out by the full-matrix least-squares method to $R=0.054$ with 722 independent X -ray reflection data. The structure is similar to that of olivine except for the arrangement of the PO_{4} tetrahedra.

Introduction. Mercury, a member of Group IIb, has chemical properties somewhat different from those of the remaining elements of the same group. This

0567-7408/82/010239-03\$01.00
suggests the possibility that mercury can show different crystal chemical behavior from cadmium in formation of phosphates. However, there are few reports on the crystal structure of mercury phosphates to date. In the course of studies on divalent metal phosphates, we obtained single crystals of $\mathrm{HgNaPO} \mathrm{O}_{4}$ and determined its crystal structure. Although the structure is similar to that of CdNaPO_{4} (Ivanov, Simonov \& Belov, 1974; Hata, Okada, Aoki, Akao \& Iwai, 1979), they are not isomorphous, as shown later.

Single crystals of HgNaPO_{4} were prepared by hydrothermal reaction of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and NaOH solution with initial pH values in the range 6-8 © 1982 International Union of Crystallography
at 473 K for 2 weeks. The crystals obtained were colorless, transparent, hexagonal prisms of $0.2-1 \cdot 0$ mm in length and $0.1-0.5 \mathrm{~mm}$ in diameter or hexagonal plates of $0.05-0.1 \mathrm{~mm}$ in thickness and $0.5-1.0 \mathrm{~mm}$ in diameter. The pinacoidal faces are perpendicular to the c axis and cleavages parallel to (010) are perfect.

The lattice constants were refined from the 2θ values of 29 reflections measured on a four-circle diffractometer (Philips PW 1100/20) with the program RLC-3 (Sakurai, 1967). The crystals are orthorhombic and from the systematic absences observed on Weissenberg photographs, the possible space groups are restricted to $\mathrm{Cmcm}, \mathrm{Cmc}_{1}$ and C 2 cm .

Intensities were measured on the automated fourcircle diffractometer with Mo $K \alpha$ radiation, using a crystal of dimensions $0.15 \times 0.10 \times 0.05 \mathrm{~mm}$. The $\omega-2 \theta$ scan mode was employed with a scan speed of 2° min^{-1} in ω. A total of 722 independent reflection data which satisfied the relation $\left|F_{o}\right|>3 \sigma\left|F_{o}\right|$ were obtained within the range $2 \theta \leq 90^{\circ}$ (σ : the standard deviation due to the counting statistics). Intensities were corrected for Lorentz and polarization factors. Absorption corrections ($\mu=44.56 \mathrm{~mm}^{-1}$ for Mo Ka) were made with the program FDINCOR. The structure was solved by a three-dimensional Patterson and consecutive difference Fourier syntheses, and refined by the full-matrix least-squares program LINUS (Coppens \& Hamilton, 1970). For the first step, the space group was assumed to be Cmcm , and then the remaining two were tested. The calculation gave the reliability factors $R=0.0592$ for $C 2 \mathrm{~cm}, R=0.0588$ for $C m c 2_{1}$ and $R=0.0594$ for $C m c m$ with anisotropic temperature factors for Hg, P and Na atoms. Since all the structure models were essentially identical and there was no significant difference between the R values obtained, the space group Cmcm with the highest symmetry of the three was adopted for the space group of this crystal. The calculation converged to $R=0.054$ and $R_{w}=0.064$ with anisotropic temperature factors for all the atoms, where $R_{w}=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /$ $\sum w\left|F_{o}\right|^{2}$. The weighting scheme employed was that proposed by Hughes (1941): $w=1$ if $\left|F_{o}\right|<124$ and $w=\left(124 /\left|F_{o}\right|\right)^{2}$ if $\left|F_{o}\right| \geq 124$. The atomic scattering factors for $\mathrm{Hg}, \mathrm{P}, \mathrm{Na}$ and O atoms and the anomalous-

Table 1. Final positional $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors calculated from the anisotropic U values for HgNaPO_{4}

$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	x	$1905(1)$	2500	$0.99(2)$
Hg	0	5000	0	$1.14(7)$
Na	0	$8599(3)$	2500	$0.55(16)$
P	0	$7552(7)$	$4366(11)$	$1.01(17)$
$\mathrm{O}(1)$	0	$9536(7)$	2500	$1.15(18)$
$\mathrm{O}(2)$	$2145(12)$	95		

dispersion corrections were taken from International Tables for X-ray Crystallography (1974).

The final positional and thermal parameters are given in Table 1.*

Discussion. The structure projected on (001) and (100) is shown in Fig. 1 (a) and (b) respectively. The selected interatomic distances and bond angles are listed in Table 2.

As seen in Fig. 1, the structure of HgNaPO_{4} is related to that of olivine, $(\mathrm{Mg}, \mathrm{Fe})_{2} \mathrm{SiO}_{4}$. The main difference is in the orientation of the tetrahedral anions. We can derive the latter structure from the former if we rotate the respective tetrahedral anions around the line $x=y=0$ or its equivalents (Fig. 1a). Because of this rotation, the packing of O atoms is different in

[^0]

Fig. 1. The structure of HgNaPO_{4} projected on (a) (001) and (b) (100). Numbers are $z \times 10^{2}$, and $x \times 10^{2}$ respectively.

Table 2. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$
Symmetry codes: (0) x, y, z; (i) \bar{x}, y, z; (ii) $x, y, \frac{1}{2}-z$; (iii) $x, y-1, z$; (iv) $\bar{x}, y-1, z$; (v) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (vi) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (vii) $\frac{1}{2}-x$, $\frac{3}{2}-y, z-\frac{1}{2}$; (viii) $\bar{x}, 1-y, 1-z$; (ix) $\bar{x}, 1-y, z-\frac{1}{2}$; (x) $x-\frac{1}{2}$,
$\frac{3}{2}-y, z-\frac{1}{2}$.

PO_{4} tetrahedron

$\mathrm{P}-\mathrm{O}\left(1^{0,11}\right)$	$1.554(7)$	$\mathrm{O}\left(1^{0}\right)-\mathrm{O}\left(1^{\text {ii }}\right)$	$2.406(10)$
$\mathrm{P}-\mathrm{O}\left(2^{0,1}\right)$	$1.539(7)$	$\mathrm{O}\left(1^{0}\right)-\mathrm{O}\left(2^{0}\right)(\times 4)$	$2.553(8)$
Mean	1.546	$\mathrm{O}\left(2^{0}\right)-\mathrm{O}\left(2^{\mathrm{i}}\right)$	$2.524(10)$
	$\mathrm{O}\left(1^{0}\right)-\mathrm{P}-\mathrm{O}\left(1^{11}\right)$	$101.4(4)$	
	$\mathrm{O}\left(1^{0}\right)-\mathrm{P}-\mathrm{O}\left(2^{0}\right)(\times 4)$	$111.2(2)$	
	$\mathrm{O}\left(2^{0}\right)-\mathrm{P}-\mathrm{O}\left(2^{\prime}\right)$	$110.1(4)$	

these two crystals. Mg and Fe atoms in olivine are replaced by Na and Hg atoms in HgNaPO_{4}. Na atoms occupy $M(1)$ sites and Hg atoms $M(2)$ sites. In contrast to the octahedral coordination of the $M(2)$ atom in olivine, the Hg atom is surrounded by two O (1) and two $\mathrm{O}(2)$ atoms, forming a strongly distorted HgO_{4} tetrahedron with the mean $\mathrm{Hg}-\mathrm{O}$ distance of $2.321 \AA$. The $\mathrm{Hg}-\mathrm{O}(1)$ bond $[2.084$ (7) \AA] is markedly shorter than $\mathrm{Hg}-\mathrm{O}(2)$ [2.559 (7) \AA] and than the sum of the crystal radii for Hg^{2+} (fourfold coordination) ($1 \cdot 10 \AA$) and O^{2-} (sixfold coordination) ($1.26 \AA$) (Shannon, 1976), indicating the covalent character of the $\mathrm{Hg}-\mathrm{O}(1)$ bonds. The larger $\mathrm{O}(1)-$ $\mathrm{Hg}-\mathrm{O}(1)$ angle [151.6(2) ${ }^{\circ}$] also suggests preference of the Hg atoms to form linear twofold coordination.

The Na atom is surrounded octahedrally by two $\mathrm{O}(1)$ and four $\mathrm{O}(2)$ atoms with the mean $\mathrm{Na}-\mathrm{O}$ distance $2.390 \AA$. The NaO_{6} octahedra share edges with one another to form ribbons parallel to [001] lying at $x=0$ and $x=0 \cdot 5$. Since the Hg^{2+} ion attracts the $\mathrm{O}(1)$ atom more strongly that does the Na^{+}ion, the $\mathrm{Na}-\mathrm{O}(2)$ distance $[2.368$ (5) $\AA]$ is shorter than that of $\mathrm{Na}-\mathrm{O}$ (1) $[2.434(6) \AA]$ whose $\mathrm{O}(1)$ atom is not involved in a shared edge. The perfect cleavages parallel to (010) are well explained by the rather long $\mathrm{Hg}-\mathrm{O}(2)$ and $\mathrm{Na}-\mathrm{O}(1)$ bonds.

The PO_{4} tetrahedron is almost regular. The $\mathrm{P}-\mathrm{O}(1)$ and $\mathrm{P}-\mathrm{O}(2)$ bond lengths are 1.554 (7) and 1.539 (7) \AA respectively, with the mean value of $1.546 \AA$. The symmetry of the PO_{4} tetrahedron is $m 2 m$, and this is a rare example according to Baur (1974). The PO_{4} tetrahedra share edges [$\left.\mathrm{O}(2)-\mathrm{O}(2)\right]$ with the neighboring HgO_{4} tetrahedra, lying alternately with the latter along [001]. The longer $\mathrm{P}-\mathrm{O}$ (1) length is probably due to the stronger covalency in the $\mathrm{Hg}-\mathrm{O}$ (1) bond than in $\mathrm{Hg}-\mathrm{O}(2)$.

Although both Cd and Hg atoms belong to Group II b, having similar crystal radii, the structures of HgNaPO_{4} and CdNaPO_{4} are significantly different. Though the metal ions occupy almost the same positions in both crystals, the O atoms arrange approximately in hexagonal closest packing in CdNaPO_{4} as in the structure of olivine, whereas they arrange so as to yield a twofold coordination for Hg atoms in HgNaPO_{4} in consequence of the rotation of PO_{4} groups about 45° around the line $x=y=0$ or its equivalents (Fig. 1a). This causes the differences in symmetry and lattice parameters between these two compounds. Although the mean $\mathrm{P}-\mathrm{O}$ lengths are nearly equal in both crystals, the distortion of the PO_{4} tetrahedron in HgNaPO_{4} estimated in terms of Baur's $\mathrm{DI}(\mathrm{PO}), \mathrm{DI}(\mathrm{OO})$ and $\mathrm{DI}(\mathrm{OPO})$ (Baur, 1974) is a little smaller than that in CdNaPO_{4}.

We are very grateful to Professor M. Kato of Tokyo Institute of Technology who allowed us to use an automated four-circle diffractometer. Computations were carried out on the M-170 computer (Hitachi) at the Computer Center of Tokyo Institute of Technology.

References

Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Hata, M., Okada, K., Aoki, H., Akao, M. \& Iwai, S. (1979). Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology. No. 4, pp. 43-48.
Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737-1752.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Ivanov, Y. A., Simonov, M. A. \& Belov, N. V. (1974). Sov. Phys. Crystallogr. 19(1), 96-97.
Sakurai, T. (1967). Universal Program System for Crystallographic Computation. Crystallographic Society of Japan.
Shannon, R. D. (1976). Acta Cryst. A 32, 751-767.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36282 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

